A few months ago I decided to redo a pair of bookshelf speakers I had built almost 15 years ago. Click here if you want to check them out. This speaker makeover consists of swapping the HiVi Research W6 driver for a sleeker Dayton Audio RS180-8 7″ woofer and replacing the vanilla Vifa dome tweeter with a HiVi research RT1.3WE planar ribbon tweeter. And the results turned out awesome. The speakers sound much better, have a smoother, flatter frequency response, have more bass, more treble (thanks to a much more complex crossover) and I think they just look a lot better, more modern, more high-end then they did before. This blog post is meant to serve as the condensed version of a forthcoming (and much longer) post that goes into a lot more detail surrounding the design aspects of this speaker with a special focus on the crossover. For this post, I’m just going to show off some pictures and kind of walk through the process of taking this old pair of speakers and making them shiny and new again. I’ll also share some of my thoughts about this speaker project overall for those looking to embark on something similar.
With a retrofit build like this there were two basic criteria I had to stick to when picking out a new woofer: it had to model/sim well in the existing enclosure volume of 0.57 cubic feet and it had to physically fit in the cutout of the old woofer. This actually narrowed my search down quite a bit. Parts Express has a great selection of 6″-7″ woofers that would have fit the bill nicely, but when I ran the numbers for the Dayton Audio RS180-8 aluminium cone woofer, I knew I had a winner on my hands. I’ve used several Reference Series drivers from Dayton Audio and they never disappoint. It modeled great in the volume I had, and even with the original tuning frequency of 42 Hz, I wouldn’t even need to change the port length, and being that it is a 7″ woofer, it actually fit the opening almost perfectly compared to the old Hi-Vi W6 woofer. And with the woofer all picked out, I moved onto the tweeter selection.
This proved to be a much more difficult task. The original tweeter cutout matched a fairly standard 104mm diameter faceplate, common with a lot of tweeters, especially Vifa tweeters. It would have been easy to pick up a XT25TG30 or a DX25BG60 and they would have dropped right in, but I really wanted to do something different, something more challenging and more of a departure from the original tweeter, which was an older Vifa DX25TG soft dome. I wasn’t exactly sure how I was going to flush mount a new driver with a different diameter faceplate onto a speaker that already had a hole cutout in the middle of it though. So that was my original hesitation to selecting a completely new tweeter. But once I figured that out though (which I’ll go into below) I ventured beyond identical tweeter sizes. That’s when the HiVi Research RT1.3WE planar ribbon tweeter caught my eye. This tweeter looked sweet! A planar ribbon type tweeter with a nice and flat frequency response, a flat impedance curve and a huge 4.7″ aluminum faceplate. I quickly sketched up some drawings of these two drivers mounted into my pre-existing enclosure and they looked absolutely fantastic. Driver spacing was perfect on the front baffle and the dark gray surround color of the Dayton woofer matched the dark gray aluminum faceplace of the HiVi tweeter nicely and I just loved that little hint of copper peeking through its metal grill. Also the black metal grill actually matches the black aluminum cone really well. And that grill would help keep kids’ poking fingers at bay. I had found my tweeter. I added a pair of woofers and tweeters to my shopping cart and week later these beauties showed up at my doorstep. Let the speaker project begin!
With drivers in hand and the speaker enclosures already done, I had to figure out just how to get these new speakers to work with the existing holes of the original speaker boxes. For starters, I really wanted to flush-mount both the woofer and tweeter. Which is really what made this whole process just that much harder. With holes already cut in the enclosure, there’s no way to get a router in there to make a perfect circle to create a recess for the driver basket because there’s just a big open hole there. Normally you would use a circle jig with and a center guide pin in the middle of the location where you want the driver and you router the recess portion first, and then go back and cutout the driver hole. Or in some cases you can add another thinner board on top of the baffle that is cut out separately from the woofer hole. Both options seemed like non-starters. The speaker hole was supposed to come second, not first.
That’s when I came up with the idea to glue a strip of MDF inside the cabinet to the backside of the front baffle that had small blocks of MDF glued to it that were equal to the thickness of the baffle. This basically put a piece of wood just big enough for the guide pin of a circle jig to fit right in the middle of each driver cutout and at the same height as the baffle. As if the holes weren’t even there. And with that, I set the circle jig to the exact size for the woofer and tweeter, set the depth to match the thickness of the drivers, and cut out with perfect precision the recesses required to flush mount each driver. After that was complete, I ripped out that temporary MDF strip and small wood blocks and was left with a perfect recess to fit the new drivers. Well, I still had to take a jigsaw to the tweeter cutout because it was literally fitting a square tweeter in a round hole. The HiVi tweeter housing has a rectangular shape so I just had to cut little corners out of the existing round hole from the previous tweeter and I used a paper template as a guide that that matched the tweeter dimensions for doing so. Piece of cake. Let’s move on!
Alright so this is where we get to the abridged version of this blog post, the crossover design. This seriously deserves a complete post of its own and I’ve actually already started writing it, and it’s long, and wordy, and goes on and on about concepts of baffle step compensation and notch filters and discusses in detail response plots from REW of literally hundreds of different crossover combinations that I tried before settling on the final design you see here. So I won’t rehash those details again. Suffice it to say, I ended up with a ~2,800 Hz crossover point and 24 dB/octave slopes, a full 6 dB of baffle step compensation (which after two weeks of really listening in my actual room, I revamped it to be only 3.5 dB of BSC and to me they sound way better, see updated schematic to the left) and notch filters on both the woofer and tweeter to help clean up some driver resonances. In all, the crossover has 15 total elements, which is bigger and badder than any crossover I have designed to date. They were so massive in fact, that I didn’t even end up putting them inside the cabinet, I built separate little wooden enclosures to house all of the capacitors, inductors and resistors. This certainly is not everybody’s cup of tea, but I had more room to store the crossovers outside than I felt like I had space inside the enclosures. So I just went for it and made the entire crossover its own little box, painted it black, stained it dark brown and said to myself, well isn’t that fantastic!
My wife’s first comment when she saw them was, “Where do you plan on putting those?”. I resisted the urge to say, “They mount above the speakers on the wall, like picture frames!” Showcasing my beautiful crossovers next to pictures of our beautiful children. Instead I replied, “They’ll go inside or underneath the media console, don’t worry, you’ll never see them.” She made a grumble and walked off only half satisfied with my response. To be fair to her, at this point in the whole speaker process, it had been months since I started. I had taken over half the house with all my speaker measurement gear, laptops, amps, mixing consoles, wires galore, not to mention the speakers themselves half-finished, everything just sitting in whichever room I had commandeered for the week to do all of my speaker testing. So when I took over the kitchen table to solder the crossovers into these little boxes, I could understand her curiosity. I think she was happy though that the crossovers would not become a permanent part of our family room decor. As you can see in the finished pictures, the crossovers fit nicely into the bottom cabinet of our media console and sit up against the sides, with the door closed, they are completely out of the way, out of sight, out of mind.
Jeesh Dan, that’s the abridged version? Yup, just dumb stories and no technical substance, for now. I’ll let most of the pictures do the talking. All anybody really wants to see is pictures anyway. The crossovers feature all air-core, low-DCR inductors, metalized polypropylene capacitors and non-wire wound resistors. I used Passive Crossover Designer 7.0 to simulate and design the crossovers and used REW (Room EQ Wizard) to take all the measurements, 533 measurements in total, once all was said and done. I finally realized the limit to the number of graphs you can display at once in REW – and it’s 99. And you know what? Sometimes, it just wasn’t enough. Moving on.