Weekend Project: Two-way Bookshelf Speakers with Spunk

Mini J Two-Ways (42)We listen to a lot of music in my family, there are a vast array of speakers and stereos and mp3 players in this house. Whether on the go, in the car, or relaxing at home, there’s always a song playing somewhere. As my oldest daughter’s birthday was approaching, I decided I wanted to build her a small pair of bookshelf speakers for her room. Something that she could enjoy for many years to come. Something that was made by Dad just for her.

And so I present the “Mini J” two-way bookshelf speaker system. This speaker starts with a Dayton Audio Designer Series 5″ woofer and a 1″ Vifa soft dome tweeter. The DS series woofers from PE represent an excellent value, have a great look, and surprising bass response for a driver this small. Decent Xmax and a low fs make this little driver perform very well in a small cabinet size. The great upper frequency extension make crossing over to almost any tweeter a walk in the park. And for the tweeter I picked the Vifa DX25TG59-04 which has great power handling, low fs, and a smooth, flat response out to 20 kHz. It’s got a wide-roll surround around the dome and just has a great overall look to it. Besides, I’m a big fan of Vifa drivers and have been using them for many years.

miniJcadAfter picking the drivers I started with the cabinet design. I drew up some initial plans and started tweaking the cabinet volume and shape until I came up with something I really liked. I used Unibox to model the speaker response and ended up going with the Standard Design model which yields an f3 of 59 Hz in a 5.4L cabinet tuned to 56 Hz with no hump or dip in the response. This requires an enclosure size of 11.25x7x9 (HxWxD) using a mixed panel thickness of 1/4″, 1/2″ and 3/4″ MDF. Parts Express had also recommended a similar enclosure volume but they also recommended specific dimensions that meet what’s called the Golden Ratio. So I gave it a shot and I intentionally made the height and width conform to this Golden Ratio which is 1.618:1. There’s some great reading about the Golden Ratio over on Wikipedia if you’re interesting in killing a few more minutes. Aesthetically the most pleasing rectangular shape to look at and quite possibly exhibits superior sonic properties than other ratios. Hey, but I won’y get into that here. They look great to me and they sound fantastic too, but now I’m getting ahead of myself.

With the cabinet design complete, I moved onto the crossover design. I love the Designer Series drivers from PE because they provide FR and ZMA data for easy import into crossover designing tools such as Passive Crossover Designer. While the Vifa tweeter did not have raw data, I still made good use of SPL Trace to create data from the datasheet by tracing the FR and ZMA plots into data I can actually use. I don’t know why ALL driver manufacturers don’t provide this type of data. A picture of a plot in a .pdf file is hardly enough for doing any kind of real crossover design. You could argue that the manufacturer raw data isn’t exactly ideal either, but it’s a start.

summedresponsemodeledI’ll try and be brief on the crossover design and my methods of doing crossover design because quite frankly it’s just that, my method, and I’m still tweaking and proving my method with each new speaker design. I’m not sure I’m there yet, but this is actually a big part of the fun of speaker building. I always shoot for the simplest crossover with the fewest elements to achieve the flattest FR and a decent impedance. I typically add a Zobel network to the woofer to flatten the impedance above fs which helps with the high-frequency roll-off. The woofer is a 12dB/octave set at about 2,700 Hz with a cap value that is about double the textbook design value. This provides a sharper roll-off without peaking just before cutoff. The tweeter also ended up being a 12 dB/octave but wired in phase with the woofer. The inductor in this case is also slightly tweaked to be lower than the textbook value which also increases the slope slightly and according to the simulation blends/sums well with the woofer on-axis. I also added a 4 ohm series resistor and a 20 ohm shunt resistor (aka L-pad) to pad the tweeter and match the overall level of the woofer. It also brings my impedance of the system up to around 8 ohms which is where I wanted it for an easy load to even the cheapest amps.

crossoverimageNow that I had some crossover values assigned I started putting parts in my cart at Parts Express. Another fun part about building speakers, getting to buy everything. Since the crossover design at this point was just a model, I do like to buy multiple different values of capacitors and resistors so I can tweak things in a listening environment. I didn’t buy a bunch of different value inductors because they are quite expensive and I just hoped that my simulation was close enough to allow me to only tweak the caps once I got closer to being done. Caps are cheap, especially electrolytics, so I bought every value from 3.3uF all the way up to 15 uF which would allow me several tuning options on both the woofer and the tweeter and the zobel network. I also bought several values of resistors so I could adjust the tweeter level as needed. One day I would like to have every standard value inductor/cap/resistor just so I can have the ultimate freedom to tweak but that project will have to wait for another day.

I was just about ready to cut wood at this point, so I drew up a cut sheet and got started. The cutsheet in this case is a little unique. The box design consists of (3) panels of 3/4″ MDF that make up the front, brace and back each piece being 6″x10.25″. The sides and top and made up of 1/2″ MDF which are cut at 8.75″x10.25″ (sides) and 8.75″x7″ (top/bottom). These cuts were a breeze on my table saw and were designed this way so as to allow the table saw to be set to each dimension only once and every cut made so that every cut that is dependent on a flush fit when assembled is exactly the same size, even if the saw isn’t cutting each piece at exactly the width it should. It doesn’t matter because all the pieces that fit together that require that dimension just end up being the same. The only cut that matters is the width of the top and bottom pieces which need to be cut to whatever the width of the front/brace/back ended up being +1.0″. With a table saw, every cut comes out near perfect anyway but even if they didn’t, this design allows for a little slop in each cut while still providing a perfectly flush fit.

Anyway, I cut the wood, built the boxes, sanded the boxes, painted the boxes, built the crossovers, tweaked the crossovers, measured the responses, installed the drivers, added some polyfill the port and the terminal cup and alas I was finally done. And just in time for my daughter’s birthday the next day. I was able to whip these out in only 4 days mainly just working a few hours each night after the kids had gone to bed. So they are a super easy project but were a lot of fun to design and build and they sound absolutely fantastic. I like the fact that I could tailor the sound a little knowing what type of music will be played on these speakers. While they don’t have a lot of low-end presence, they make up for it with a smooth, solid-sounding midrange and treble. I’m not all about that bass (no treble) and can appreciate a speaker’s ability to produce vocals without coloration. The boxes are rock solid too, very little resonances despite the 1/2″ MDF. But enough fluff, here’s the meat and potatoes. Click here for a parts list from Parts Express. Check out some of the build pics below as well as pics of the final product. Hope you enjoy!

Finally, scroll past the pictures for in-room measurements and near-field plots of various crossover options and L-pad values I had considered. In the end, I chose what “sounded best” to me regardless of what the plots actually looked like.

So with most speaker projects just getting that first listen is an awesome feeling. These speakers definitely sound great. Good balance between the woofer and the tweeter and they have a really good soundstage, so music doesn’t sound like it’s just coming straight out of these two drivers. You close your eyes and listen and you can’t really tell where the speakers are located. The music just fills the room in front and behind. And I love that. No harshness out of the tweeter either. You can put your ear right up to it and it sounds clean and smooth. So here’s some FR plots. I don’t try and read too much into every little bump and valley, I’m mainly looking for an overall balanced sound. The slight dip near the crossover freq is mainly due to the close proximity of the microphone in between the drivers which actually shows up in the PCD model as you move the listening position closer to the speaker. I suppose if I had a little more time and a few extra cap/inductor values on-hand I may have tried achieving a slightly flatter response, as I am sure it is achievable, but for now I’m going to call it good enough and overall I am happy with the results.

The last thing I did was take my measurement gear outside and ran some FR plots in basically a near-anechoic environment. I took a bunch of measurements at several different distances with both the tweeter wired in-phase and wired out of phase (meaning + to + and – to – on both woofer and tweeter) therefore actually making the speakers acoustically out of phase due to the 12 dB/crossover yet quite possibly back in phase due to the delta in physical relationship between the acoustic centers of the woofer and the tweeter. Confused yet? These plots at least tell me that everything is summing properly on-axis which yields the flattest FR. Notice that these speakers do not have baffle step compensation as is evidenced in the plots below. I decided not to incorporate it since these speakers will almost always be backed against a wall in a very small space, I didn’t want the bass and lower-midrange region to be too aggressive. You can see from all the measurements, in-room included, that there is a definite rise in amplitude between 500-700 Hz. John Murphy of True Audio came up with a quick formula for approximating the -3 dB point given the baffle diameter (or width) which is f3 = 380/W where W is the width of the baffle in feet. These speakers are 7″ wide, or 0.588 feet which amounts to a -3 dB frequency equal to 655 Hz. That matches well with the measured data shown here. Even without BSC, the speakers sound fantastic in-room, but if I were to implement it, I wouldn’t do more than 3 dB and I would shoot for a corner of about 655 Hz.

Posted in Audio/Video | Tagged , , , , , , , , , , , , , , , | 1 Comment

The Ultimate DIY Hall Tree

DSC_5566I don’t know exactly when it happened or how it came about exactly, but one day my wife said to me, “I want a hall tree”. I replied, “Um, you want a tree in the hall?” She said, “No, crazy, I want one of those things, like an entryway bench, but with coat hooks so you can hang your coat and the kids can hand their backpacks.” Ah yes, I did know what she was talking about and a quick Google image search confirmed my suspicions of exactly what this so-called hall tree looks like. “Can you build me one of these?” Sure I thought, no problem, looks easy enough, how big do you want it? We walked over to the proposed location of the hall tree and she started at one end of the hall and said, “How about we start it here” and then she walked and walked and walked until she reached the other end of the hall and said “to here”.

“What? that’s like 10 feet long. You want a 10-foot long hall tree?”
“Yes, with 6 cubbies, one for everybody in the family.”
“Including the baby? But he’s only two! What does he need his own spot in the hall tree for?”
“Well, one day he will grow up and he will need a spot for his stuff too.”

Good grief. Okay, let’s draw it up and see what we can do – a 10-foot long hall tree with a spot for everybody in the family, including the two-year old baby. So basically what I came up with was a single 5-foot wide hall tree with 3 spots or cubbies and I would just build two of them. Just from the standpoint of trying to move it and the weight alone, this made sense. I had a few constraints that sort of defined this size, which in my opinion can really be scaled to any size that works in your home if need be. But this thing was actually going to go in our hallway to the garage. We rarely leave or come in the front door, so the hall tree would be going in our hallway which is only about 5 feet wide. So this hall tree had to be shallow, I mean at most, I wanted it only a foot deep, thus not to intrude into the hallway and be a nuisance. Next I capped the height at 72″ or 6 feet. My plan was to build the this hall tree entirely out of 3/4″ common pine which come in 6′ pieces at various widths ranging from 1-1/2″ to 12″. Also I have a light, a sconce, that is about 6′ from the floor on the wall and while I could have moved it up to allow a taller hall tree, it wouldn’t have been in the same location as the other sconces throughout the house so I decided just to leave it. I also could have removed it and added an overhead light but honestly didn’t see a need for the hall tree to be much taller than this. So with the basic exterior dimensions settled on, I started to design out the rest of the unit.

For purposes of this write-up I will assume we are building just one hall-tree, or half of what I built here.

It starts with a base structure made from 3 pieces of 1x12x6′ common pine which make 3 cubbies that are 17″ wide x 15-1/4″ high by 12″ deep. (Note that 1×12 common pine is actually 3/4″x11-1/2″).

Base Cut Pieces:
Top (1) = 1x12x54″
Bottom (1) = 1x12x52-1/2″
Exterior Sides (2) = 1x12x20-1/4″
Interior Cubby Sides (2) = 1x12x15-1/4″
Bottom Face (1) = 1x4x52-1/2″
Base Board Molding = 1/2″x4-1/4″x54″+12″

I will attempt to make some drawings of how this goes together since I did not take near enough pictures to show how it goes together. But it’s not too hard to figure it out from the finished pics. Butt joints are made where every piece is glued and screwed together. The top part of the hall tree is made up of the following cut pieces:

Upper Cabinet Cut Pieces:
Sides (4) = 1x10x49″
Top and Bottom (1) = 1x10x54″
Shelves (3) = 1x10x17″
Back (hook part) (3) = 1x6x17″
Trim Top (1) = 1x11x55-1/2″

Same thing with the bottom, all the pieces are butt joints which are glued and screwed together. With this part complete, it doesn’t look like much actually. It isn’t until the base molding and side facing and cove molding is added that it starts to actually look kinda nice. Those are all made up of 1×3 pieces of pine which are just cut to fit the sides. I did leave a 1/2″ overhang on the back to cover the 1/2″ pieces of red pine which make up the back. The 11/16″ cove molding sits nicely on the inside corners of each piece of 1×3″ pine to again give it a finished look. The back is what I really love. I stumbled upon these 5″ wide tongue and groove style red pine boards in the lumber section and thought they would look great as the backing to my hall tree. They give it that great french country look having a real groove every 5″ for that bead-board look without being fake. And since they are real wood, I decided not to paint them and instead finished them with a couple coats of a satin polyacrylic just to bring out the natural colors in the wood and make it look nicer. It contrasts with the white everywhere else and to me just finishes off the whole thing in style.

Anyway, here’s some pictures of just the wood, before being painted, and then done. I will try and get some more drawings of how it goes together if anyone is interested. As well as a complete parts list. Though honestly I don’t imagine anyone trying to duplicate this design exactly, for us this was a pretty custom solution that met a specific need for us. But if nothing else, I hope it might inspire others who are looking for something similar to at least consider what can be built with just a few pieces of lumber from your local hardware store.

Posted in Home DIY | Tagged , , , , , | Leave a comment

Steve’s Home Theater Matches TC Sounds Excursion with Insane Crown Power – Multiplied by Four

tcsoundsLast month I flew to Utah to help my brother Steve build some subs to finish out his sweet basement home theater. After months of design and indecision we settled on a concept that we both felt would best suit the home theater and provide a rocking movie-going experience. And this is the design, start to finish, in a nutshell. Without too much extra blabbing by me, here it is…

We built four (4) 90 liter sealed sub enclosures to house a set of 15″ TC Sounds LMS series subwoofers. The subs are powered by four (4) Crown XLS 2500 Drivecore Series amplifiers. The subs/room is EQ’d with a Behringer DEQ2496 Ultracurve Digital EQ. Just about everything was bought from my all-time favorite place on the planet – Parts Express. The heart of the system is a Marantz AV8801 A/V pre-amp/processor. The LCR and surround sounds are provided by Klipsch THX UltraII reference speakers. The projector is a JVC DLA-X70R with 4K e-shift D-ILA and 80,000:1 native contrast ratio. The projector itself warrants its own blog entry. For now, however, I’m just focusing on the sub build.

15inchtcsoundssubWe threw together a design and picked out the speakers and amps. The Crown amps were picked for their output power capabilities which mated well with the TC Sounds drivers and their ability to run extremely cool and extremely quiet. Each amp is running bridged mono into 4 ohms and drives the two (2) two-ohm voice coils in series of each driver. This presents the maximum power possible from each amp to each driver without being excessive or wasteful. These amps are not your cheapest when it comes to $/watt (such as the popular Behringer models), but they are an exceptional product that worked very well in this application.

Each XLS 2500 amplifier is running off its own dedicated 15A breaker from the home’s main panel. The speaker wiring from the amps is 12/4 AWG in-wall speaker wire with two of the 12 gauge wires in parallel for each of the (+) and (-) polarity from the amp to the driver. This minimizes losses and maximizes the use of the 12/4 speaker wire.

We had 3 days to build and install all four subs and 1 day to do the EQ and room calibration. We worked hard for basically 3 days straight, putting in nearly a 16-hour day on Saturday, working from 8AM to midnight and at least 12 hours on the other days. It was crazy, but I couldn’t go home until it was completed. For me it was my dream job, getting to build speakers all day long. What more could you ask for?

The theater consists of a 14″ deep false wall and a perforated 160″ screen. The subs are recessed back into the wall and sit flush to the screen. All four subs sit front and center. The sub design can be found in the pics below. It is not your typical enclosure shape, but suits the purposes of this theater in maximizing the stage space by only being 13-3/4″ deep. The rest of the volume is made up in the width of the enclosures which are 37″ wide. The height of each enclosure is 19″. Total internal volume is about 90 liters or 3.1 cu.ft. This is a good size for the LMS series drivers.

finalresponseOf course I couldn’t wait to break out my measurement equipment and see just what (4) 15″ subs looked like in terms of frequency response. I didn’t do any max SPL tests even though I had my SPL meter, we just didn’t have time to do it. We did watch a few movies though and ear-piercing levels and I can truly say that this system sounds phenomenal. I won’t even attempt to describe it, but it truly sounds amazing, definitely the best home theater experience I have ever heard and seen. The bass is unreal, it’s deep, it’s powerful and it shakes absolutely everything. The sound is rich and full. And the measurement plots show that we were able to achieve basically a flat response +/- 3 dB all the way down to 15 Hz at the listening position. And that wasn’t with a ton a EQ at the low end either. We tamed some of the peaks and flattened the response without hardly any low-end boost. While the sealed enclosures themselves rolled off as expected, the room gain more than made up for it. Not to mention there are (4) 15″ drivers. So once we killed some of the higher-frequency peaks, the subs had no problem going low. Room modes occurred at around 60 Hz and we did not alter those with the EQ.

For now I’m just going to throw up the pics, so feel free to click through them and you can see the theater take shape as well as the sub build and install. I should have taken more pics overall of the theater, because there is so much more going on than just the subwoofers. In fact, now that the acoustic panels are installed you can’t even see the speakers. Just the great craftsmanship of the woodwork throughout the room and that massive 160″ screen. It looks as good as it sounds. And it sounds amazing. I can definitely recommend this kind of setup for someone looking for an awesome subwoofer project. I know there are lots of different ways to get bass into a room but this one was simple, elegant, affordable, tune-able and in the end matched extremely well with the rest of the speakers in the system. My brother was happy in the end and so I was happy. Now to beef up my own theater with a couple a 15’s, well, maybe another day.

stevestheater1stevesrackstevesubs

Posted in Audio/Video | Tagged , , , , , , , , , , , , | Leave a comment

Office Makeover – Board and Batten, Triple Computer Desk

Triple Desk Wall BoardSo we finally got around to getting at least one wall of the den/office completed. When we moved into the new house last year I had just thrown the computers on the floor with a couple pieces of particle board which sort of made a cheesy desk and called it good. Far from aesthetic but fully nearly functional. After drafting up one the largest makeover projects I might have ever taken on (see last pic below), I scaled it back about 90% and got to work. Only two weekends later it’s done, or rather, 1/3 done to be more accurate, since we have 2 more walls to finish before we’re done. But are house projects really ever done?

Step 1. Build a desk. Not just any desk, but a desk for 3 computers. Why 3 computers? Don’t ask. Maybe it’s because that’s how many will fit along the wall, or because that’s just how many I have, or because that’s how many this family needs to stay functional. Whatever the reason, this desk was going to be huge. Though honestly, it wasn’t about the desk, the desk was, or rather is, temporary, a stop-gap until I can do a real built-in. I built it mostly from wood I already had in the garage, namely particle board, MDF and 3×1 common pine strips. It’s nothing fancy, but it was enough for me to get the project started one Saturday morning without a trip to Home Depot. I won’t go into the details of the desk. It works fine for now, it’s also more functional than my “desk” before and now it’s at least somewhat aesthetic and fits the intent and new style of the room. I will say that my wife did a bang-up job painting and distressing it, considering what she had to work with. If nothing else, it was good practice for some of the other furniture she has plans to re-finish.

Step 2. Add the wainscot. In this case, we did a board and batten style wainscot. Google it and see what comes up if you want ideas. There’s no end to what or how you can do this look. I suppose it’s not really a wainscot but then again, this really isn’t a blog. I created this look with strips of 1/4″x3-3/4″x98″ pieces of pre-cut MDF from Home Depot. they sell these pieces for various house projects will no real single intended use. I found they worked awesome for doing the battens as they were the right width and thickness and all machine-cut so the edges were perfect. Most people don’t use a board/batten this thin, as the look it creates is more flat, but I wanted a clean edge all the way down to the baseboard, which is just over 1/4″ at the top, and I didn’t want to do a chamfer where the different thickness pieces meet up. I’ve seen it both ways, this way worked best for me.

DSC_0511 (Medium)I cut one of the strips at about 2″ and ran it the length of the wall on top of the existing baseboard (which I did not remove) to give it some added height and to create somewhat of a bottom rail. The total baseboard height is about 5″ from the carpet so it looks a little better and gives a nice clean edge for the battens to run into. Next I cut seven boards at 39″ and placed each one on top of the 2″ bottom rail above the baseboard. I took the 1-3/4″ piece that was left over from the bottom rail and added it to the top along with a piece of the 3-3/4″ making the top part, the top rail, 5-1/2″ wide. Then to give the molding some depth, I routered a custom top rail to go over the 1/4″ piece and ran it the length of the wall. Since this piece ran into an existing door casing (that was only 1/2″ deep) I ended up doing a 30 degree chamfer to bring the 1″ top rail down to a 1/2″. It looks fine to me, though a real craftsmen would probably scoff.

The battens are nailed and glued to the walls, since I didn’t space them on the studs, and the top and bottom boards are glued and nailed only at the studs. I puttied the holes, caulked the transitions, primed and painted using our original trim house color “Swiss Coffee” in a semi-gloss. The wall finish between the battens is not smooth, it still has the hand-trowel texture as does the rest of the room, but since this was a retrofit job, I didn’t have the spacing to add a flat board and I didn’t trust my mudding skills to try and smooth it. A professional would have smoothed the wall, but for this budget renovation, the texture is a non-issue and really doesn’t look as bad as you’d think. Again, I’ve seen it done both ways. Smoothing it is preferred however and I will reconsider this option as I move through out the house with this style.

Step 3. Paint. So after painting the board and batten white, it only made sense to apply a fresh coat of color to the wall above it. Our last office we painted a dark/deep blue but this time around we wanted something a little lighter, so we went with a blue-gray midtone Behr color called Silent Tide from Home Depot. This color is beautiful and went on the wall perfectly. The contrast with the white looks awesome. It makes me want to add a wainscot to every room in my house, just to get that contrasting look of color midway up the wall. It’s so neat, so clean.

So that’s about it, I’ve nearly hit my thousand word mark, which means I’ve written too much. I added the desk I had built (which covered most of the wainscot, bummer, oh well) and set up the 3 computers. And there you have it, how to spruce up an office with some color and style and only 1 trip to Home Depot. There’s plenty of other, better, tutorials out there for creating this style but I’ve never seen it done with so much computing power in front of it! Anyway, check out the pictures below for a complete start to finish on this project and if you like the look, let me know in the comments below! Thanks again for checking out Dan’s Blog For Whoever.

Posted in Home DIY | Tagged , , , , , , , , | 2 Comments

How to Build a Simple Under-Cabinet Shelf for Your Kinect Sensor

Kinect_Under_MountThis past weekend I built a small under-cabinet mount for our XBOX 360 Kinect. This sweet little shelf moves the sensor from above the shelf in the entertainment center (in front of the center channel speaker) to just below the shelf and tucks it neatly out of the way. The wire is more hidden now too and it looks much less thrown-together than it did before. I don’t think this post needs much detail, as the pictures pretty much speak for themselves, but I’ll add some words for anyone looking for a quick fix to clean up their Kinect integration into their media center.

I found a scrap piece of 3/4″ MDF that was 5″ wide and about a foot long. I marked it in three locations, at 3″, 4″ and 5″ and made 3 cuts. I took the 5″ piece and rounded the front, somewhat to match the rounded front of the base of the Kinect sensor. I routered the bottom half and sides of this piece also as well as the top of the support piece and the underside of the top piece. See pics for details if this is unclear. The routered edge simply provides a cleaner look as apposed to leaving it square.

I drilled, counteresunk, glued and screwed a pair of 2″ wood screws from the support piece into each of the top mount and base pieces. I drilled (4) holes into the support mount to accommodate the 1-1/4″ wood screws to mount into the underside of the shelf in the entertainment center. I spray painted it to match the entertainment center Heirloom White from Krylon. I did a fit check with the TV still in place to make sure it was sitting as close to the TV as possible without hitting the back of it. I removed the TV, centered the mount, marked it and screwed it in. I put back the TV and placed the Kinect sensor on its new resting place, its new home, where it will sit happily ever after. We played a quick round of Dance Disney to test it out and it works flawlessly. No complaints here.

Not much else to say about this little build. I know it’s a weak blog post, but not much is going on around here these days, but I do have something much bigger and better in the works. In the mean time, check out the pictures and thanks for dropping by!

Posted in Audio/Video, General, Home DIY | Tagged , , , , , , | Leave a comment

Backyard Projects – Grand Sequoia Play Set Assembly

CaptureLast year we bought a new home, while the details of that little adventure are better left for another post, I did want to share some of the work we have done in the backyard in order to make it a more kid-friendly place to play. Now the house was everything we could have wanted, but the backyard left a lot to be desired. There was plenty of space, it had potential, but there was nothing back there but dirt, rocks and one of the hugest piles of sand I’ve ever seen outside of Zuma Beach. The first thing on the list of things to do in the backyard was – put in a play set.

We searched around for a few weeks and ended up settling on The Grand Sequoia from Sam’s Club. They were doing a sale, $500 off with free shipping. The kids all agreed they liked it the best so we made the purchase. It showed up 5 days later, all 900+ pounds of it. This was going to be a long weekend but we were up for it.

Before we could start on the play set however, I had some ground prep to take care of. First and foremost was removing all the trees, weeds and bushes that filled the back corner of the yard, right where we had slated for the new play set. Second was to remove the hot pink/green/purple 2×10 lumber that lined the old sand box which was buried 8″ deep into the ground. We had approximately 600 sq.ft of area (or 450 cu.ft. of sand) to work with for using underneath the play set. We had to move about half of it. Thirdly I had to dig down the remaining area around the existing sandbox so as to make dirt to fill in where the sand was being removed. That took a weekend all in itself. But it was worth it.

The play set went up without too many issues. The biggest problems we had were missing screws and bolts. If you purchase this play set, or one like it, I would recommend going through every nut and bolt with the instruction manual to make sure everything is accounted for. We had to make two emergency trips to the hardware store just to pick up pieces that weren’t included. Not to mention that several screws they had included were simply the wrong length to get the job done. Fortunately I had a stock pile of enough random screws on-hand I was able to get by without making a 3rd trip to Home Depot (which isn’t exactly around the corner). To top off the missing pieces, it snowed, twice, while we were building the play set. Which is quite the feat considering I live in Southern Arizona where it only snows maybe once a year. It was pretty though, and I didn’t complain about it one bit.

Once the playset was up and completed, I had the fun of moving half that sand box to accommodate the new play location. I did it one wheel barrow at a time for many hours in a row until my back was broken. I framed the new sandbox area with a double-stacked high 4x4x8′ Cedar Posts from Home Depot (they were only $2.59 each). I held them into the ground with 1/2×12″ pieces of pre-cut re-bar that were about $1 each. I was really happy that the color of the cedar matched the playset nicely. They have just enough height to keep the sand inside and was quick and easy to put up.

So with that, the kids are having a great time playing in the new sandbox and swinging on the swings, going down the slide and climbing up the rockwall. We also bought a pirate ship’s wheel and a pirate flag from Amazon, which I still need to put up. Overall it was a fun project that I was happy to do while the weather was so cool. Here’s a few pics of the whole process as well as some cool time lapse video of the entire build-up process. 14 hours condensed into only 30 seconds. I wish we could have done it that fast!

IMG_3956

DSC_8796

DSC_8800

DSC_8844

DSC_8858

DSC_8972

Posted in General, Home DIY | 1 Comment